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Three projective special linear groups PSL(2,p), those with p = 5, 7 and 11, can be
seen as p-multiples of tetrahedral, octahedral and icosahedral rotational point groups,
respectively. The first two have already found applications in carbon chemistry and
physics, as PSL(2,5) ≡ I is the rotation group of the fullerene C60 and dodecahedrane
C20H20, and PSL(2,7) is the rotation group of the 56-vertex all-heptagon Klein map,
an idealisation of the hypothetical genus-3 “plumber’s nightmare” allotrope of carbon.
Here, we present an analysis of PSL(2,11) as the rotation group of a 220-vertex, all 11-
gon, 3-regular map, which provides the basis for a more exotic hypothetical sp2 frame-
work of genus 26. The group structure and character table of PSL(2,11) are developed
in chemical notation and a three dimensional (3D) geometrical realisation of the 220-
vertex map is derived in terms of a punctured polyhedron model where each of 12 pen-
tagons of the truncated icosahedron is connected by a tunnel to an interior void and
the 20 hexagons are connected tetrahedrally in sets of 4.

KEY WORDS: PSL(2,11), group theory, undecakisicosahedral group, topology,
carbon allotrope
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1. Introduction

The three groups PSL(2,5), PSL(2,7) and PSL(2,11) form a special sub-
set of the Projective Special Linear groups PSL(2,p) in view of their particular
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permutational structure. They can be viewed as multiples of the symmetry
groups of the regular polyhedra in three dimensional (3D) space, and for this
reason are also called the pollakispolyhedral groups [1]. PSL(2,5) and PSL(2,7)
correspond to the pentakistetrahedral, 5T , and heptakisoctahedral group, 7O,
respectively. Both have found applications in chemistry and physics. PSL(2,5) is
the rotation group of the icosahedron and of the skeleton of the most abun-
dant fullerene, C60. PSL(2,7) is the rotational symmetry of an idealisation of
the “plumber’s nightmare”, which offers a model for “schwarzite” allotropes
of carbon. This paper is devoted to the analysis of the third family member,
PSL(2,11), which forms the undecakisicosahedral group, 11 I . PSL(2,11), whilst
perhaps more exotic than the first two groups, also describes trivalent frame-
works and so has the potential for application to other hypothetical high-genus
forms of carbon. We study the realization of 11 I as the symmetry group of a
60-vertex regular map of genus 26. The relationship between this map and the
skeleton of C60 provides the key to this realization. Applications of PSL(2,11) in
physics or chemistry so far are few. It has potential relevance for the study of the
icosahedral phase of quasicrystals, [2] and was identified as a finite simple sub-
group of the Cartan exceptional group E8 [3]. The conjugacy class structure of
the group has been used to provide a group theoretical specification of the C60
graph [4]. In view of the intrinsic connections between this group and the icosa-
hedral lattice, sooner or later this powerful symmetry can be expected to appear
directly in the description of physical phenomena.

2. The pollakispolyhedral groups

The concept of pollakispolyhedral groups arises from an alternative defini-
tion of the icosahedral rotation group I . Take p a prime number and let Fp
denote the finite field of p elements. They can be represented by the elements
0, . . . , p − 1; larger elements can be reduced to an element in this finite field by
dividing by p and taking the remainder. The set of all 2 × 2 matrices with all
entries in the field Fp and determinant 1 then forms a group which is known in
mathematics as the special linear group SL(2,p) [5]. It has order p(p2 − 1). The
group PSL(2,p) is defined as the quotient group of SL(2,p) modulo its centre,
where this centre consists of all scalar matrices. For all prime numbers p � 5, the
centre has only two elements and the corresponding quotient group PSL(2,p) is
simple. Of all these prime numbers p however, the numbers p = 5, 7, 11 stand
out as they are the only cases in which the group PSL(2,p) acts transitively on
sets of p as well as on sets of p + 1 elements, a result already known to Galois.
For all other prime values of p the group PSL(2,p) acts transitively on sets of
p + 1 elements, but not on sets of p elements. In this way, the three projective
linear groups PSL(2,5), PSL(2,7) and PSL(2,11) are distinguished from the rest
and form a special family known as the pollakispolyhedral groups.
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The smallest member PSL(2,5) has 60 elements and is isomorphic to the
pure icosahedral rotation group I . It is alternatively called the pentakistetrahe-
dral group 5T as it contains the tetrahedral group as a subgroup of index 5.
This can easily be seen on a regular dodecahedron where the 20 vertices can be
divided into five sets of four vertices such that each set of four vertices forms a
regular tetrahedron [1]. The group PSL(2,5) acts transitively on this set of five
tetrahedra by the action of one of the fivefold rotations. The group acts also
transitively on a six element set as can be seen from the action on the six diag-
onals of the regular icosahedron connecting opposite points.

A similar analysis can be made for the group PSL(2,7) of order 168, which
is alternatively called the heptakisoctahedral group 7O as it contains the octahe-
dral group O as a subgroup of index 7. The group can be represented by the
regular genus-3 Klein map, named after Felix Klein who investigated its very
high symmetry in connection with the theory of multivalued functions [6]. Using
this map it is easy to show the transitive character on a 7-set, as under removal
of the sevenfold symmetry elements, the 56 vertices split into seven octahedral
structures containing eight vertices. The complete structure of this group and its
relevance to some negative-curvature carbon structures was described in previous
papers [1,7].

As we shall see, the last member of the pollakispolyhedral groups, the un-
decakisicosahedral group 11 I or PSL(2,11), can also be represented by means of
a regular map. The smallest 3-regular map with rotational symmetry PSL(2,5)
(i.e., 5T or I ) is the all-pentagon dodecahedral map, and the smallest with the
rotational symmetry PSL(2,7) (i.e., 7O) is the all-heptagon Klein map. Likewise,
to realise PSL(2,11) (i.e., 11 I ) by a 3-regular map it is necessary to go to an all-
undecagon map which will have 220 vertices, v, and 330 edges, e and 60 faces,
f . Hence, from f = v/2 + 2(1 − g), we find a genus g of 26. Conder and Do-
bcsányi [8] have tabulated all the small 3-regular maps, and the map of interest
here is F220A in their catalogue. An explicit adjacency list for this graph was
supplied to us by Professor Conder. Its total automorphism group consists of
1,320 elements, of which the orientation-preserving (rotational) part of 660 ele-
ments corresponds with the group PSL(2,11). While the genus-3 Klein map can
still be visualized as a triply periodic structure in 3D space, [1] a geometrical rep-
resentation for this genus-26 map has thus far not yet been reported. The most
obvious representation would be to draw a Schlegel-like diagram consisting of a
central 11-gon surrounded by layers of undecagonal faces, adding layers until all
faces have been accounted for. In figure 1, we show such a central 11-gon sur-
rounded by its eleven neighbouring faces together with an indication of the next
layer of faces. Continuation to produce the whole diagram with 220 numbered
vertices and all 60 faces would yield a very intricate figure. Instead, we work with
the dual map, represented by the dashed lines in figure 1. It consists of 60 un-
decavalent vertices and 220 triangular faces, and of course retains the PSL(2,11)
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Table 1
Rotation-scheme of the 60-vertex dual map, which is used to give a geometrical representation of

the group PSL(2,11).

1. 5 43 32 31 37 48 18 39 2 57 58 31. 35 21 7 6 4 50 37 1 32 26 27
2. 1 39 53 52 33 44 24 35 3 56 57 32. 31 1 43 42 8 22 60 10 33 30 26
3. 2 35 49 48 54 40 30 51 4 60 56 33. 32 10 46 50 44 2 52 41 34 29 30
4. 3 51 45 44 50 31 6 47 5 59 60 34. 33 41 23 22 47 6 20 49 35 28 29
5. 4 47 36 40 41 52 12 43 1 58 59 35. 34 49 3 2 24 42 15 21 31 27 28
6. 10 57 16 20 34 47 4 31 7 53 54 36. 40 5 47 46 27 16 56 29 37 24 25
7. 6 31 21 25 17 58 29 19 8 52 53 37. 36 29 55 54 48 1 31 50 38 23 24
8. 7 19 48 47 22 32 42 24 9 51 52 38. 37 50 17 16 51 30 14 53 39 22 23
9. 8 24 59 58 49 20 39 46 10 55 51 39. 38 53 2 1 18 46 9 20 40 21 22

10. 9 46 33 32 60 25 13 57 6 54 55 40. 39 20 26 30 3 54 41 5 36 25 21
11. 15 42 54 53 59 26 19 56 12 50 46 41. 45 23 34 33 52 5 40 54 42 17 18
12. 11 56 22 21 55 43 5 52 13 49 50 42. 41 54 11 15 35 24 8 32 43 16 17
13. 12 52 27 26 23 57 10 25 14 48 49 43. 42 32 1 5 12 55 28 14 44 20 16
14. 13 25 44 43 28 53 38 30 15 47 48 44. 43 14 25 24 2 33 50 4 45 19 20
15. 14 30 58 57 45 21 35 42 11 46 47 45. 44 4 51 55 21 15 57 23 41 18 19
16. 20 6 57 56 36 27 51 38 17 42 43 46. 50 33 10 9 39 18 27 36 47 15 11
17. 16 38 50 49 58 7 25 60 18 41 42 47. 46 36 5 4 6 34 22 8 48 14 15
18. 17 60 28 27 46 39 1 48 19 45 41 48. 47 8 19 18 1 37 54 3 49 13 14
19. 18 48 8 7 29 56 11 26 20 44 45 49. 48 3 35 34 20 9 58 17 50 12 13
20. 19 26 40 39 9 49 34 6 16 43 44 50. 49 17 38 37 31 4 44 33 46 11 12
21. 25 7 31 35 15 45 55 12 22 39 40 51. 55 45 4 3 30 38 16 27 52 8 9
22. 21 12 56 60 32 8 47 34 23 38 39 52. 51 27 13 12 5 41 33 2 53 7 8
23. 22 34 41 45 57 13 26 59 24 37 38 53. 52 2 39 38 14 28 59 11 54 6 7
24. 23 59 9 8 42 35 2 44 25 36 37 54. 53 11 42 41 40 3 48 37 55 10 6
25. 24 44 14 13 10 60 17 7 21 40 36 55. 54 37 29 28 43 12 21 45 51 9 10
26. 30 40 20 19 11 59 23 13 27 31 32 56. 60 22 12 11 19 29 36 16 57 2 3
27. 26 13 52 51 16 36 46 18 28 35 31 57. 56 16 6 10 13 23 45 15 58 1 2
28. 27 18 60 59 53 14 43 55 29 34 35 58. 57 15 30 29 7 17 49 9 59 5 1
29. 28 55 37 36 56 19 7 58 30 33 34 59. 58 9 24 23 26 11 53 28 60 4 5
30. 29 58 15 14 38 51 3 40 26 32 33 60. 59 28 18 17 25 10 32 22 56 3 4

rotational symmetry of the original 220-vertex 3-regular map. A full descrip-
tion of this dual map is by means of a rotation scheme (table 1) [9]. Such a
scheme lists for every vertex of the map a consistent cyclic rotation (called a
local rotation) of the edges emanating from this vertex listed by the end-verti-
ces. For instance, for vertex 11 one sees that going around this vertex, one first
encounters the edge (1–5), followed by (1-43), . . . and eventually (1–58). The
faces can be retrieved by the face-tracing procedure as discussed in [9]. In the
present case, identification of all triangular faces is a trivial task as each triple
composed of a vertex and two consecutive vertices in its local rotation forms a

1Throughout, vertex labels are in bold.
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Figure 1. Partial Schlegel-like diagram representing the 220-vertex regular map of genus 26. The
face-numbering corresponds with the numbering used in table 1 to describe the 60-vertex dual map.

The edges of the dual map are drawn as dashed lines.

face. Our final aim is to replace this combinatorial representation with a geomet-
rical one which makes it possible to locate the 26 handles of the map. First, we
analyse the structure of the highly symmetrical undecakisicosahedral group.

3. The undecakisicosahedral group

3.1. Conjugacy-classes

In this section, we describe in detail the group structure and representa-
tions of the undecakisicosahedral group 11 I . The 660 elements are subdivided
into eight conjugacy classes:

11 I = E + 60C11 + 60C2
11 + 110C3 + 55C2 + 132C5 + 132C2

5 + 110C6. (1)

As indicated before, these group-elements can most easily be represented as
the orientation-preserving automorphisms of the regular genus-26 dual map (fig-
ure 1). As it is a regular map, its rotational symmetry group 11 I can be generated
by only two generators, [10] in this case an 11-fold symmetry operation through
one of the undecavalent vertices and a threefold symmetry operation through
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one of the triangular faces. A C11-type generator can be visualized on the Schle-
gel-diagram of figure 1. It is obtained by performing an 11-fold rotation through
the central vertex 1, leading to the following permutation:

C11 → (1), (11), (25), (34), (51),

(2, 57, 58, 5, 43, 32, 31, 37, 48, 18, 39),

(3, 45, 9, 52, 16, 30, 4, 55, 8, 27, 38),

(6, 29, 47, 28, 22, 35, 23, 49, 41, 20, 33),

(7, 36, 14, 60, 21, 24, 13, 17, 40, 44, 10),

(12, 42, 26, 50, 54, 19, 46, 53, 56, 15, 59). (2)

Notice that although, we have chosen to adopt a point group notation for
this symmetry element, it does not correspond to an ordinary 11-fold rotation
operation. In fact, the C11 operation stabilizes five vertices, giving a total of
60/5 = 12 11-fold directions. Notice also that these stabilized vertices and their
surroundings are not rotated through the same angle. When the C11 operation of
eq. (2) rotates vertex 1 through 2π/11, vertex 11 is rotated through 3 × 2π/11,
25 → 4 × 2π/11, 34 → 9 × 2π/11 and 51 → 5 × 2π/11. The elements C11, C3

11,
C4

11, C5
11 and C9

11 are therefore in one class, containing a total of 12×5 = 60 ele-
ments. The other class of 60 11-fold elements is similarly formed by the remain-
ing powers of C11, namely C2

11, C6
11, C7

11, C8
11 and C10

11 . We can take as a three-
fold generator the C3 element going through the triangular face (1,2,57), which
reads:

C3 → (1, 2, 57), (3, 15, 18), (4, 14, 27), (5, 53, 16), (6, 43, 52),

(7, 20, 12), (8, 34, 55), (9, 22, 29), (10, 32, 33), (11, 17, 40),

(13, 31, 44), (19, 49, 21), (23, 37, 24), (25, 26, 50), (28, 51, 47),

(30, 46, 60), (35, 45, 48), (36, 59, 38), (39, 56, 58), (41, 54, 42). (3)

In total four triangular faces are stabilized by this C3 element: (1, 2, 57),
(41, 54, 42), (10, 33, 32) and (23, 24, 37), where the first two faces are rotated
clockwise through 2π/3 and the last two faces counterclockwise through 2π/3.
The inverse element C−1

3 therefore belongs to the same class, giving a total of
(220/4) × 2 = 110 threefold elements. C11 and C3 generators can be combined
to yield a C2 operation in the following way:

C2 = C3 × C11 → (1, 2), (3, 48), (4, 8), (5, 52), (6, 9), (7, 59),

(10, 20), (11, 17), (12, 41), (13, 40), (14, 30), (15, 38),

(16, 46), (18, 56), (19, 60), (21, 23), (22, 45), (24, 31),

(25, 26), (27, 36), (28, 29), (32, 44), (33, 43), (34, 55),

(35, 37), (39, 57), (42, 50), (47, 51), (49, 54), (53, 58). (4)
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This agrees with the fact that three adjacent symmetry elements in a regular
map combine to form the unit element, C3 × C11 × C2 = E [11]. The C2 opera-
tion is seen to leave six edges invariant: (1, 2), (3, 48), (5, 52), (14, 30), (27, 36),
(28, 29). In this way, the 330 edges of our map give rise to a total of 330/6=55
twofold elements. Further, one also has sixfold elements C6, which are located
along the same directions as the C3 axes:

C6 → (1, 42, 2, 41, 57, 54), (3, 5, 15, 53, 18, 16),

(4, 47, 14, 28, 27, 51), (6, 48, 43, 35, 52, 45),

(7, 19, 20, 49, 12, 21), (8, 44, 34, 13, 55, 31),

(9, 50, 22, 25, 29, 26), (10, 37, 32, 24, 33, 23),

(11, 39, 17, 56, 40, 58), (15, 53, 18, 16, 3, 5). (5)

Each of the 10 composing six-cycles can be seen as a kind of rotation-
reflection, which connects two three-cycles of the corresponding C3 element. As
the inverse elements C−1

6 are part of the same class, it contains a total of 110 ele-
ments. The square and cubic powers correspond to the previously discussed C3
and C2 elements. Finally, the two remaining classes consist of five-fold symmetry
elements, which group the 60 vertices together in 12 5-cycles:

C5 → (1, 39, 20, 6, 31), (2, 40, 16, 7, 32), (3, 36, 17, 8, 33),

(4, 37, 18, 9, 34), (5, 38, 19, 10, 35), (11, 13, 15, 12, 14),

(21, 43, 53, 26, 57), (22, 44, 54, 27, 58), (23, 45, 55, 28, 59),

(24, 41, 51, 29, 60), (25, 42, 52, 30, 56), (46, 49, 47, 50, 48). (6)

Their interpretation will become clearer in the next section when we give a
new geometrical representation to locate the 26 handles of our map. Here, we
limit ourselves to stating that there are a total of 66 fivefold directions, which
give rise to a 132-element class consisting of the C5 elements and their inverses
C4

5 , and a class of 132 elements formed by the C2
5 elements and their inverse

operations C3
5 .

3.2. Character table

In table 2, we show the character table of 11 I , which was retrieved from
the Atlas of Finite Groups [5]. The notation of its irreducible representations
has however been adapted to a chemical notation based on their representational
degeneracy: A is non-degenerate, E and T doubly and triply degenerate, G and
H fourfold and fivefold degenerate, and from then on higher degeneracies are
indicated in alphabetical order (I, J, K, L, M, N, O, . . .). There are eight irreduc-
ible representations, with labels A, H1, H2, M1, M2, N , O1 and O2. We thus have
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Table 2
Character table of 11 I .

E 55C2 110C3 132C5 132C2
5 110C6 60C11 60C2

11

A 1 1 1 1 1 1 1 1
H1 5 1 −1 0 0 1 A A∗
H2 5 1 −1 0 0 1 A∗ A
M1 10 −2 1 0 0 1 −1 −1
M2 10 2 1 0 0 −1 −1 −1
N 11 −1 −1 1 1 −1 0 0
O1 12 0 0 B B∗∗ 0 1 1
O2 12 0 0 B∗∗ B 0 1 1

A = 1/2(−1 + i
√

11); B = 12(−1 + √
5).

a non-degenerate representation and two fivefold, two tenfold, one 11-fold and
two 12-fold degeneracies. A single asterisk denotes a complex conjugate. The H1
and H2 representations therefore form a complex conjugate pair. The entries B
and B∗∗ are also connected as irrational conjugates under

√
5 → −√

5.

3.3. Subgroup structure

In this section, we discuss the subgroup structure of 11 I , which will be of
importance in the next section, where we try to find a geometrical model for our
genus-26 map. Figure 2 gives the full genealogical tree of 11 I , where the lines
indicate direct group-subgroup lineage. It was retrieved from a generator-based
program [9]. As we can see, our parent group has four direct subgroups: I ′, I ′′,
M5,11 and D6. In total there are 22 subgroups isomorphic to the purely rota-
tional icosahedral group. They fall into two subgroup classes I ′ and I ′′, which
are non-equivalent within 11 I symmetry. The subgroups within one of these clas-
ses are transformed into each other by any one of the 11-fold operations. Note,
that equivalence of both classes is restored when one considers the full symme-
try group 11 Id of the genus-26 map, which also includes orientation-reversing
symmetry operations. The second largest subgroup class consists of 12 groups
of order 55 corresponding with the metacyclic group M5,11, which is formed by
the semi-direct product of a fivefold and 11-fold cyclic group and is the only
subgroup of 11 I that is not isomorphic with a point group. The fourth direct
subgroup class contains 55 groups of order 12 isomorphic to a sixfold dihedral
group. Apart from the subgroup class T with 55 purely rotational tetrahedral
groups, all other subgroup classes are only composed of dihedral groups Dn or
cyclic groups Cn.
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Figure 2. Genealogical tree of subgroups of the undecakisicosahedral group 11 I .

Figure 3. The four icosahedral Archimedean solids on 60 vertices. From left to right: the small
rhombicosidodecahedron, the truncated dodecahedron, the snub dodecahedron and the truncated

icosahedron.

4. Geometrical realization of 11 I

In this section, we will look for a good geometrical model for our 60-
vertex map, one that makes it possible to locate the 26 handles and thereby
interpret its intricate topology. In the previous section, we saw that the group
11 I contains the purely rotational icosahedral group I as the highest subgroup
with point group symmetry. We therefore investigate the possibility of form-
ing a 3D geometrical model exhibiting such icosahedral symmetry, where we
further impose the restriction that the 60 vertices remain equivalent, as is the
case under PSL(2,11) symmetry. In 3D space there are four semiregular convex
polyhedra on 60 vertices obeying these restrictions. They are the four icosahe-
dral Archimedean solids on 60 vertices depicted in figure 3, namely the small
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Table 3
Some properties of the four Archimedean solids on 60 vertices. fi is the number of faces of size i .

Solid v e f f3 f4 f5 f6 f10

Small rhombicosidodecahedron 60 120 62 20 30 12 – –
Truncated dodecahedron 60 90 32 20 – – – 12
Snub dodecahedron 60 150 92 80 – 12 – –
Truncated icosahedron 60 90 32 – – 12 20 –

rhombicosidodecahedron, the truncated dodecahedron, the snub dodecahedron
and the truncated icosahedron. In table 3, we list some of their properties.

Seeking a geometrical representation it is worth investigating whether the
graphs of these Archimedean solids appear as subgraphs of the graph underly-
ing our 26-genus map. If such an Archimedean subgraph does indeed exist, it
would be useful as a 3D icosahedral backbone on which a complete geometrical
model of the genus-26 map could be built. In general, the search for a specific
subgraph within a given graph is an NP-complete problem [12]. In the present
case however, we want the point group of the Archimedean graph to be one of
the 22 icosahedral subgroups of the parent group 11 I . Any one of the 22 can
be taken, as all will merge into a single class under the total symmetry group
of our map 11 Id (including both orientation preserving and orientation reversing
automorphisms). As icosahedral subgroup we have chosen the group generated
by the following five and threefold elements:

C5 → (1, 2, 3, 4, 5), (6, 12, 18, 24, 30),

(7, 13, 19, 25, 26), (8, 14, 20, 21, 27),

(9, 15, 16, 22, 28), (10, 11, 17, 23, 29),

(31, 52, 48, 44, 40), (32, 53, 49, 45, 36),

(33, 54, 50, 41, 37), (34, 55, 46, 42, 38),

(35, 51, 47, 43, 39), (56, 60, 59, 58, 57),

C3 → (1, 17, 24), (2, 18, 25), (3, 19, 21), (4, 20, 22),

(5, 16, 23), (6, 34, 47), (7, 35, 48), (8, 31, 49),

(9, 32, 50), (10, 33, 46), (11, 55, 30), (12, 51, 26)

(13, 52, 27), (14, 53, 28), (15, 54, 29), (36, 57, 41)

(37, 58, 42), (38, 59, 43), (39, 60, 44), (40, 56, 45). (7)

Our strategy to identify the Archimedean subgraphs with this symmetry
consists in taking an arbitrary vertex (all 60 vertices are equivalent) and build
an Archimedean framework, using a triple of neighbouring icosahedral symme-
try elements to generate the chosen icosahedral group. Each time new vertices
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Figure 4. Small patches of the small rhombicosidodecahedron consisting of all faces surrounding
vertex 1 and depicting the cases with the starting pentagon (1, 2, 3, 4, 5) (Left) and (1,31,6,20,39)

(Right).

are added, a check is made that the partial structure still complies with the con-
nectivity of our genus-26 graph. In the following subsections we will investigate
case-by-case the existence/non-existence of each of the four types of icosahedral
Archimedean subgraphs.

4.1. The Small rhombicosidodecahedron

In figure 4, we depict the local environment around a starting vertex, say 1,
of the small rhombicosidodecahedron. This vertex is seen to be surrounded by a
pentagonal, a triangular and two quadrangular faces. As there is a fivefold axis
running through the centre of the pentagonal face, we can start by identifying
all possible pentagonal cycles containing vertex 1. To comply with the imposed
icosahedral symmetry, the next nearest neighbours of vertex 1 within such a pen-
tagonal cycle must be images of vertex 1 under some fivefold operation (C5 or
C2

5 ) of the above defined icosahedral subgroup. We therefore identify all images
of vertex 1 under the operations of both conjugacy classes. They are found by
explicit generation of the icosahedral group of 60-vertex permutations defined by
the generators of eq. (7):

1
C5−type operations−−−−−−−−−−−−−−−−−−→ 2/5/6/10/11/15/16/20/21/25/26/30,

1
C2

5−type operations
−−−−−−−−−−−−−−−−−−→ 3/4/31/34/36/39/41/44/46/49/54. (8)

In this way, we get a listing of all possible neighbours of vertex 1 in the
unique pentagonal cycle containing this vertex. However, following the rotation
scheme of table 1, we see that of these images, only the vertices indicated in bold
on the right of eq. (9) are neighbours of vertex 1. They define two different pen-
tagonal cycles. The first cycle (1, 2, 3, 4, 5), is defined by an element of the C5
class, the second (1,31,6,20,39) transforms by an element of the C2

5 class. We
therefore have to distinguish two cases, depending on the chosen starting pen-
tagon.
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We start with pentagon (1, 2, 3, 4, 5) (figure 4, left). As the quadrangular
cycles are crossed by twofold axes, we can use the images of vertex 2 under the
15 twofold elements to identify the possible vertices for position a.

2
C2−type operations−−−−−−−−−−−−−−−−−−→ 9/14/19/24/29/31/36/41/46/51

56/57/58/59/60. (9)

Of these images, only the vertices 31, 57 and 58 are also neighbours of ver-
tex 1 and can therefore occupy position a. However, because there is a threefold
axis running through the trigonal cycle, the vertex at position a should also be
an image of vertex 1 under one of the 20 threefold elements.

1
C3−type operations−−−−−−−−−−−−−−−−−−→ 7/9/12/14/17/19/22/24/27/29

32/33/37/38/42/43/47/48/52/53. (10)

The above list however shows that none of the three candidates for position
a are images of 1 under a C3-type operation. It is therefore, impossible to find a
vertex for position a under the defined icosahedral subgroup, and the left-hand
starting configuration of figure 4 cannot be extended to a small rhombicosido-
decahedral subgraph.

For the case with the starting pentagon (1,31,6,20,39) (figure 4, right), the
possible vertices at position b can be found in a similar way, now looking at the
images of vertex 31 under the twofold operations.

31
C2−type operations−−−−−−−−−−−−−−−−−−→ 2/10/11/17/23/26/27/28/29/30

37/45/47/55/59. (11)

Of these images, only the vertices 2 and 37 are neighbours of vertex 1, but
vertex 2 is not an image of vertex 1 under any of the threefold operations, so we
are only left with vertex 37 for position b. The triple of incident five, three and
twofold operations through the faces neighbouring vertex 1 are now uniquely
identified and as they form a generating set, they can be used to reconstruct
the remaining part of the small rhombicosidodecahedral structure. The result-
ing structure is shown in figure 5 and it can be easily checked from table 1
that it is a valid subgraph. Now that, we have found this unique small rhomb-
icosidodecahedral subgraph, we can use it as a backbone for an icosahedral
representation of our genus-26 map. It remains to add the seven missing con-
nectivities for each vertex as prescribed by the rotation scheme of table 1. How-
ever, as all 60 vertices are equivalent, we need not reconstruct the whole map
but instead only a small patch of all faces surrounding vertex 1 (figure 6). Of
the seven missing connections emanating from vertex 1 there is one to the inside
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Figure 5. Schlegel diagram of the unique small rhombicosidodecahedral subgraph of the genus-26
map.

of the square (1,39,18,48) and the other six are all to the inside of the penta-
gon (1,31,6,20,39). The squares are thus nicely triangulated and, just as the tri-
angles, form completely closed entities without holes, thereby not contributing to
the overall topology of our genus-26 map. The 26 handles are thus confined to
the set of 12 pentagons, which are mutually connected in an intricate way, mak-
ing it very difficult to visualise this topology in 3D space. The possible existence
of the other types of Archimedean subgraphs is therefore investigated.

4.2. The truncated dodecahedron

As in the previous section, we are to try to find the possible truncated
dodecahedral subgraphs using a triple of mutually adjacent five-, three- and two-
fold axes of our chosen icosahedral group. Figure 7 shows a small patch of the
local environment around vertex 1, consisting of two decagonal and one triangu-
lar face. As a fivefold axis through the decagonal face does not map neighbour-
ing vertices onto each other, we choose to start from the threefold axis through
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Figure 6. Small patch taken from the small rhombicosidodecahedral subgraph of figure 5 showing
the structure of the genus-26 map around vertex 1.

the triangle containing vertex 1. From eq. (10) and table 1, we find that only the
vertices 32, 37, 43 and 48 are both images of 1 under a threefold operation and
neighbours of 1. Together they define two possible starting triangles, (1,43,32)
and (1,37,48). For the first starting triangle (1,43,32) (figure 7, left), we can use
the images of vertex 1 under the twofold operations to identify the unknown
neighbour of vertex 1.

1
C2−type operations−−−−−−−−−−−−−−−−−−→ 8/13/18/23/28/35/40/45/50/55

56/57/58/59/60. (12)

Of these images, only the vertices 57, 58 and 18 are neighbours of ver-
tex 1. We have thus identified three candidate C2-operations, which can also be
used to determine the vertices at positions d and e, as they form the images
of vertex 32 and 43, respectively. On the left-hand side of figure 7, the three
possible situations are depicted by the numbers in the circles, squares and dia-
monds. The situation with vertex 18 as a neighbour of vertex 1 (diamonds) can
be excluded as there is no fivefold symmetry element that maps vertex 1 onto
vertex 28 (See eq. (9)). The other two cases (circles and squares) comply with our
chosen icosahedral symmetry and can both be extended to a truncated dodeca-
hedral subgraph. However, neither is useful for visualisation. As the triangular
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Figure 7. Patches, which can be used to build complete truncated dodecahedral subgraphs starting
from the triangle (1, 43, 32) (Left) and the triangle (1, 37, 48) (Right).

faces of both truncated dodecahedral subgraphs are faces of the genus-26 map,
they are completely closed and have no contribution to the overall topology of
the map. Adding the missing connections (eight for each vertex), each decagonal
face is seen to be connected to 30 vertices belonging to various other decago-
nal faces. In this way, the 12 decagonal faces form one single 12-set of intercon-
nected faces, impossible to visualise in 3D space.

For the alternative starting triangle (1,37,48), a similar strategy (calculating
images of 1, 37 and 48 under the twofold operations) leads to the three possi-
ble numberings on the right-hand side of figure 7. However, only the solution in
the circles survives the test for the images of vertex 1 under the fivefold elements.
Addition of the missing edges leads exactly to the structure of figure 6. To see
this correspondence, we have added some of the missing edges (dotted edges),
which make it possible to see the interior pentagon (1,39,20,6,31), the quadran-
gle (1,39,18,48) and the triangle (1,37,48).

4.3. The snub dodecahedron

The discussion of the snub dodecahedron can be kept short. As it contains
the graph of the small rhombicosidodecahedron as a subgraph and there only
existed one such graph, we know that each possible snub dodecahedral subgraph
must contain the graph of figure 5 as a subgraph. The only way however to
extend this small rhombicosidodecahedral subgraph to a snub dodecahedron is
by a triangulation of its 30 quadrangular faces. In principle each quadrangular
face can be triangulated in two possible ways, depending on the chosen diagonal,
but only one of these triangulations complies with the adjacencies. In fact, the
snub dodecahedral structure was implied when we completed the patch of the
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small rhombicosidodecahedron (figure 6) and thereby triangulated the squares.
The 3D realization based on the unique snub dodecahedral subgraph therefore
poses the same problem for visualisation.

4.4. The truncated icosahedron

The last and most interesting subgraph is the truncated icosahedron, corre-
sponding with the framework of Buckminsterfullerene C60. The special relation-
ship of this truncated icosahedral structure to the group PSL(2,11) has already
been noted in papers by Kostant. [4, 13, 14] Kostant showed that the graph of
C60 can be expressed group-theoretically by the structure of a 60-element conju-
gacy class of PSL(2,11).

In figure 8, we show patches consisting of a pentagon and two hexagons
around a common vertex, where by analogy with the small rhombicosidodeca-
hedral case, we can distinguish two starting configurations based on pentagons
(1, 2, 3, 4, 5) and (1,31,6,20,39).

For the case with starting pentagon (1, 2, 3, 4, 5) (figure 8, left), we can use
the twofold-axis through the edge separating both hexagons, to find the possi-
ble missing neighbour f of vertex 2. Of the images under the twofold axes (see
eq. (9)), only the vertices 24, 56 and 57 are neighbours of vertex 2. Owing to
the axes through the hexagons, they should however also be images of vertex
1 under some threefold element. By use of eq. (10) we find that this restriction
leaves us only with vertex 24 for position f . The truncated icosahedral struc-
ture formed by a completion using this trio of generating axes is depicted in fig-
ure 9 and can be seen to comply with the adjacency information of table 1. This
truncated icosahedral structure will now be used as the backbone for an icosa-
hedral representation of our genus-26 map. It can be completed by adding the
eight missing connections for each vertex, following the description of the rota-
tion scheme of table 1. As all 60 vertices are equivalent, we again limit ourselves
to the small patch (figure 10) consisting of the pentagon and two hexagons sur-
rounding vertex 2. From this figure it can be checked that the 11 edges emanat-
ing from vertex 2 indeed follow the cyclic rotation described in table 1. Notice,

Figure 8. Patches of the truncated icosahedron consisting of all faces surrounding vertex 1 and
depicting the cases with starting pentagon (1, 2, 3, 4, 5) (Left) and pentagon (1,31,6,20,39) (Right).
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that different numbers of edges run from vertex 2 to the inside of the two hex-
agonal cycles, so that addition of the remaining edges has lowered the original
Ih symmetry of the truncated icosahedral backbone to the rotational subgroup
I . This observation corresponds with the subgroup analysis, which showed only
purely rotational icosahedral subgroups. As the genus of our map equals 26, the
connections, which run to the insides of the 32 faces of the truncated icosahe-
dron are connected, in such a way as to form 26 handles or tubes. From figure 9,
we see that the pentagon (1, 2, 3, 4, 5) and the pentagonal cycle of inscribed ver-
tices (56, 57, 58, 59, 60) correspond to opposite pentagonal faces on the trun-
cated icosahedral backbone. Both pentagonal faces are therefore connected by a
single tube or handle formed by the 10 triangles inscribed in the pentagon. The
other pairs of opposite pentagons are connected in exactly the same way. The
pentagons thus contribute six handles to the total of 26. The remaining 20 han-
dles must originate from the entanglement of the 20 hexagons. To retain icosahe-
dral equivalence of the hexagons, two tubes or handles should leave each hexa-
gon. At first sight, the placement of two tubes per hexagon seems to be incom-
patible with its local C3 site-symmetry, but as we shall see this is not necessar-
ily the case. From figure 10, we find that the hexagon (1–18–17–25–24–2) is con-
nected to 12 other vertices, which are part of three other hexagons. They are all
identified by letters A on the Schlegel-diagram of figure 9 and are shown sepa-
rately in figure 11 together with connections running to their insides. Inspection
of these four hexagons shows that they form a closed set in which each hexagon
is connected only to the other three. The same holds true for the other 16 hexa-
gons, thereby forming five quartets of hexagons (A–E), occupying the positions
of the five tetrahedra which are hidden in the truncated icosahedron [1]. Each
quartet should therefore contribute 20/5 = 4 to the total genus of the surface.
Hence, we obtain 26 as a sum of separate contributions as:

26 = 6 + 5 × 4. (13)

To check this, we apply the Euler formula to a spherical truncated icosahe-
dral backbone where only the connections within the A-hexagons are completed.
All other faces of the backbone are considered closed and without any internal
structure, so they will have no influence on the resulting topology. The number
of vertices of this structure is 60. For the number of edges and faces we have
contributions from the truncated icosahedral backbone and the internal struc-
tures of the A-hexagons. The number of edges of the backbone is 90 and its con-
tribution to the total number of faces is 28 (32 minus the 4 hexagons). The edges
and faces of the internal structure are more difficult to count as some of them
show up in two and others in three of the hexagons of figure 11. To simplify
the counts, we have shaded the triangular faces which appear three times. They
sum up to 24 and therefore correspond to a total of 24/3 = 8 different trian-
gular faces. All other triangles (48 in total) appear exactly twice and therefore
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contribute 48/2 = 24 to the total number of faces. For the edge-count we find
that the edges, which border the shaded faces appear three times; the remaining
ones twice. In total this gives us 72/3 + 24/2 = 36 internal edges. Collecting all
these results into the Euler equation we get the following result:

V − E + F = 60 − (90 + 36) + (28 + 8 + 24) = −6 = 2 − 2g ⇒ g = 4, (14)

which proves that a tetrahedral quartet of hexagons indeed contributes 4 to the
total genus. In principle it is therefore possible to embed this structure (truncated
icosahedral backbone + four interconnecting hexagons) on a surface of genus 4.
Giving a satisfying 3D realization of this surface will however be very difficult
as there exists no non-self intersecting surface of genus 4 exhibiting at least tet-
rahedral symmetry. The nearest alternative to realize this symmetry would be
to take an icosahedral small stellated dodecahedron,[15] which indeed has the
required genus of 4 and icosahedral symmetry but is self-intersecting. Neverthe-
less, the above analysis has taught us that one can realize the genus-26 map in an
icosahedrally symmetrical way. The problem of distribution of 20 handles over
the 20 hexagonal faces has been solved by forming five tetrahedral substructures
of genus 4. As each face is connected to 4 out of the six vertices of the other
three hexagons, each hexagon is connected by 4/6 = 2/3 of a tube to the other
three hexagons of the same set. Although this makes a clear interpretation of
the topology more difficult, it gives a solution to the problem of distributing two
tubes within the local C3 symmetry of the hexagon.

Our analysis for the truncated icosahedron is not yet complete, as it
remains to investigate the alternative configuration starting with the 5-cycle (1,
31, 6, 20, 39). Analysis using eqs. (10) and (11) now results in two solutions
(vertex 27 or 37 at position g), which comply with the chosen icosahedral sym-
metry and can be found in figures 12 and 17. Let us start with the first case and
investigate the related patch of figure 13, which shows the complete structure of
the map around vertex 31. A pentagonal cycle no longer combines pairwise with
its antipode, but instead connects with two neighbouring vertices of each of its
five closest neighbouring pentagons on the truncated icosahedral structure. For
instance, vertex 1 is connected to the vertices 18 and 48, which both belong to
the neighbouring pentagon (18–48–3–51–27). To visualize these connections, we
have thickened the edges between the five vertex-pairs on both figures 12 and 13.
As all other pentagons connect in exactly the same way, we end up with one
set of 12 mutually connected pentagons. The topology of this set can be again
derived by a simple count of vertices, edges and faces. The number of vertices is
60 and the edges and faces arising from the truncated icosahedral backbone are
90 and 20 (32–12), respectively. To count the number of triangular faces, con-
necting the pentagons, we have once again shaded the faces, which appear three
times. All other faces appear twice leading to a total of 120/2 + 60/3 = 80
triangular faces. In counting the edges resulting from the internal structure one
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Figure 9. Schlegel diagram of the truncated icosahedral subgraph of the genus-26 dual map found
by starting from the pentagonal cycle (1, 2, 3, 4, 5).

must be careful as some edges (indicated in bold in figure 12) have already been
counted as edges of the backbone. We thus count 180/3+60/2 = 90 edges. Using
the Euler equation, we have:

V − E + F = 60 − (90 + 90) + (20 + 80) = −20 = 2 − 2g ⇒ g = 11. (15)

A topology with 11 handles is perfectly justifiable within icosahedral sym-
metry as it corresponds with that of a “hollow" dodecahedron. It can be seen
as a dodecahedral framework where the edges are replaced by tubes, that inter-
sect at the positions of the original vertices. In figure 14 we show this surface
by means of a brass artifact dating back to the 2nd century A.D. Several exam-
ples have been found all over Europe in archeological sites of the Gallo–Roman
period. Their exact use is not known. For our purpose it serves as an icon of
a surface of genus 11. Although the structure has 12 holes running through
the faces of the dodecahedron, it has genus 11 as the 12th hole is topologically
dependent on the others. This can most easily be seen by projecting the surface
into a plane, as in figure 15, which indeed shows only 11 holes. To make our
analysis concrete, we mapped the 80 interconnecting triangles on this genus-11
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Figure 10. Patch, which visualizes the complete structure of the pentagon and two hexagons
surrounding vertex 2. All other vertices are equivalent and therefore share the same structure.

surface. As the figure shows, each pentagon is surrounded by a ring of 15 tri-
angles. Ten are responsible for the connections between neighbouring pentagons
and five, those corresponding to the shaded triangles in figures 12 and 13, form
interconnections between 3 mutually neighbouring pentagons, thereby explaining
why they appear three times in our previous face-count. As the pentagons of the
truncated icosahedral structure consume 11 handles, we are left with 15, which
should be evenly distributed among the 20 hexagons. As before, they split into
five sets of four interconnecting hexagons, forming five tetrahedral subunits of
genus 3 (indicated by letters A–E in figure 12). The distribution is now:

26 = 11 + 5 × 3. (16)
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Figure 11. Full visualization of the tetrahedral set of four hexagons, labeled A, which connect to
each other to form a topology of genus 4. A shading of a triangle indicates that it appears in three

out of four hexagons. All other triangles appear twice.

A simple count of the number of vertices, edges and faces gives the follow-
ing results:

V = 60,

E = 90 + 30,

F = 28 + 24 + 4, (17)
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Figure 12. Schlegel diagram of the first truncated icosahedral subgraph of the genus-26 dual map
found by starting from the pentagonal cycle (1,31,6,20,39).

which, by the Euler equation, shows that the four hexagons of a tetrahedral sub-
set do indeed form a topology of genus 3.

V − E + F = 60 − 120 + 56 = −4 = 2 − 2g ⇒ g = 3. (18)

This genus corresponds with that of a tetrahedral framework of tubes. In
figure 16, we give a Schlegel diagram of this surface on which all (220-80)/5=28
triangular faces are embedded. In agreement with figure 13, every hexagon is
surrounded by 15 triangles, making the necessary connections to the other three
hexagons. The shaded triangles are again located on the meeting points of the
tubes and form a bridge between three neighbouring hexagons.
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Figure 13. Small patch, taken from the truncated icosahedral subgraph of figure 12 and showing
the complete structure of the genus-26 map around vertex 31.

Figure 14. Brass artifact in the form of a genus-11 hollow dodecahedron dating back to the 2nd
century A.D. c© Provinciaal Gallo-Romeins Museum, Tongeren, Belgium.
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Figure 15. Schlegel diagram of an icosahedral tubular network of genus 11, showing the topology
of the set of 12 interconnected pentagons.

Finally, the third and last icosahedral representation of our map (figure 17)
leads to no further insight. As we can see from the patch of figure 18, the 20
hexagons are completely tessellated by four triangular faces. As there are no
holes running through these hexagons, the 26 handles are completely confined
to the set of 12 pentagons and, we have the case:

26 = 26 + 0. (19)

This corresponds to the realization of figure 6 based on the small
rhombicosidodecahedron, and so adds nothing new.

5. A 3-regular carbon network of genus 26

As the 3-regular 220-vertex map and the 11-regular 60-vertex are Poincaré
duals to each other, they are topologically equivalent. The topological analysis
of the previous section can therefore be used equally well for the 220-vertex map.
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Figure 16. Schlegel diagram of a tetrahedral tubular system of genus 3, showing the topology of
the tetrahedral set A of four interconnected hexagons.

The most appealing realisation was the case “26 = 11 + 5 × 3” where the han-
dles form a dodecahedral tubular system of genus 11 and five tetrahedral tubu-
lar systems of genus 3. As shown in figure 14, the genus-11 tubular system can
attain icosahedral symmetry in 3D space in the form of a punctured dodecahe-
dron. The set of five tetrahedral pipeworks can however not comply with icosa-
hedral symmetry: to avoid self-intersection, they have to skirt around each other,
thereby inherently lowering the symmetry. A stand-alone icosahedral 3D realisa-
tion of the 220-vertex network based on this analysis will therefore be impossible.
One plausible way to retain the icosahedral symmetry is to form a hypotheti-
cal quasi-crystallographic lattice, leading to a space-filling sp2 hybridized carbon
allotrope consisting of double-shell punctured dodecahedra which are mutually
connected by the tubes of the tetrahedral systems of pipes.

6. Independence properties

One mathematical property of relevance to the possible addition chemis-
try of an sp2 carbon allotrope is the independence number α of the underlying
graph. α is the maximum order of a set of mutually non-adjacent vertices of a
graph, and provides a model for the maximum addition of bulky groups to a
carbon framework of this topology [16]. A generalisation to d-codes [17] mod-
els addends of increasing steric demand: |Cd | is the order of the d-code in the
graph, i.e., the maximum order of a set of vertices such that all pairwise dis-
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Figure 17. Schlegel diagram of a second truncated icosahedral subgraph of the genus-26 dual map
found starting from the pentagonal cycle (1,31,6,20,39).

tances are at least d. |C2| is α, representing addends that may not be attached to
adjacent sites. If it is required that unfunctionalised vertices support a set of (dis-
connected) closed-shell π -systems, we have the closed-shell independence num-
ber α−, and generalisations to d > 2 [8]. As an 11-gon can support at most
five independent vertices our 220-vertex graph has α � 5F/3 = 100 and as the
graph is 3-regular, it has α− � 2V/5 = 88. The graph has diameter (largest pair-
wise distance) D = 9. Direct calculation gives |Cd | for the 220-vertex graph as:
96, 55, 28, 20, 10, 4, 2, 2, 1 for d = 2, . . . , 10, respectively. A carbon allotrope
based on the genus-26 map would thus be predicted to support a higher degree
of bromination, for example, than C60, for which α = 24.
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Figure 18. Small patch taken from the truncated icosahedral subgraph of figure 17 and showing the
complete structure of the genus-26 map around vertex 31.

7. Conclusions

The three groups PSL(2,p) with p=5,7 and 11 have special status as per-
mutation groups that act transitively on sets of both orders p and p + 1. They
are also multiples of the rotational symmetry groups of the tetrahedron, octa-
hedron and icosahedron, respectively. Further, they describe the proper symme-
tries of certain 3-regular maps composed entirely of 5-gons, 7-gons and 11-gons,
respectively. The 20-vertex genus-0 map of pentagons is the dodecahedron, the
parent of the fullerene family. The 56-vertex genus-3 map of heptagons is the
“plumber’s nightmare” family of labyrinthine allotropes of carbon. The remain-
ing 220-vertex, genus-26 map of undecagons has been analysed here in terms of
the notions of chemical group theory and shown to have a 3D realisation as a
punctured truncated icosahedron. The map may serve as a model of an exotic
multiply connected sp2-hybridised carbon network.
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